Version 2.0

www.beanair.com

Reference : TN-RF-19

 Document number
 Version
 V2.0

 Document number
 TN-RF-19
 Publication date
 31/03/2020

 Author
 Author
 Aymen Jegham

 Internal Reference
 Project Code
 N.A.

 Document Name
 Beandevice® Wilow - Using MQT on Node Red

Validation					
Function Recipients For For Validation info					
Reader	Yosri Jaouadi		X		
Author	Aymen Jegham	Х			

MAILING LIST				
Function	Recipients	For action	For Info	
Staffer 1	Yosri Jaouadi	Х		
Staffer 2			X	

Updates			
Version	Date	Author	Evolution & Status
1.0	02/01/2018	Aymen Jegham	First version of document
1.0.1	10/05/2019	Mohamed Bechir Besbes	Weblinks Update
2.0	31/03/2020	Habib Jomaa	 Change the name of the document configuration section (images and descriptions) using Beanscape version 3.2.0.15. Add another MQTT test with beanscape. Update the table of acquisition modes. Add dynamic example section using a Streaming mode as an example.

Document Type : Technical Note Reference : TN-RF-19

Contents

1.	TECHNICAL SUPPORT	5
2.	VISUAL SYMBOLS DEFINITION	6
3.	AIM OF THE DOCUMENT	7
1.	OVERVIEW	8
2.	INSTALATION AND ENVIRONMENT CONFIGURATION	10
	2.1 Network	10
	2.2 Configuration	10
	2.3 Tests	16
	2.4 Node-RED	20
	2.4.1 Getting started	20
	2.4.2 Static mode	21
	2.4.3 Dynamic example	28
	2.4.4 Node-RED Advanced options	36
	2.5 Cloud solution	42
3.	RELATED DOCUMENTS & VIDEOS	44

Document Type : Technical Note

Reference : TN-RF-19

Beandevice[®] Wilow - Using MQTT with Node Red

List of Figures

Figure 1: System diagram	8
Figure 2: Data collection	9
Figure 3: BeanDevice Configuration over MQTT	9
Figure 4: Local network configuration	10
Figure 5: MQTT.fx Broker profile	20
Figure 6: Raw payload displayed on Mqtt.fx	20
Figure 7 :MQTT node configuration	21
Figure 8 :A simple debugger node displays the raw payload frame	22
Figure 9 : BeanDevice type	23
Figure 10 : Acquisition modes	23
Figure 11 :Channel ID	24
Figure 12 :Flow sample	25
Figure 13 :Notification node	25
Figure 14 :SMTP setup	26
Figure 15 :SMS configuration	26
Figure 16 : Dashboard	27
Figure 17 :Storage node	27
Figure 18 : Database nodes	28
Figure 19: MQTT node configuration for dynamic mode	29
Figure 20: A simple debugger node displays the raw payload frame of Streaming mode	29
Figure 21: Full MQTT streaming client with Node Red	41
Figure 22: MQTT streaming client with node red results	41
Figure 23 :Cloud connection	42
Figure 24 Display BeanDevice Channels on a web page	43
Figure 25 :Dashboard display on a web page	43

Disclaimer

- The information contained in this document is the proprietary information of Beanair.
- The contents are confidential and any disclosure to persons other than the officers, employees, agents or subcontractors of the owner or licensee of this document, without the prior written consent of Beanair Ltd, is strictly prohibited.
- Beanair makes every effort to ensure the quality of the information it makes available. Notwithstanding the foregoing, Beanair does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information.
- Beanair disclaims any and all responsibility for the application of the devices characterized in this document, and notes that the application of the device must comply with the safety standards of the applicable country, and where applicable, with the relevant wiring rules.
- Beanair reserves the right to make modifications, additions and deletions to this document due to typographical errors, inaccurate information, or improvements to programs and/or equipment at any time and without notice.
- Such changes will, nevertheless be incorporated into new editions of this document.

Copyright: Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights are reserved.

Copyright © Beanair GmbH. 2020

1. TECHNICAL SUPPORT

For general contact, technical support, to report documentation errors and to order manuals, contact *BEANAIR® Technical Support Center* (BTSC) at:

tech-support@Beanair.com

For detailed information about where you can buy the Beanair equipment/software or for recommendations on accessories and components visit:

www.Beanair.com

To register for product news and announcements or for product questions contact BEANAIR[®]'s Technical Support Center (BTSC).

Our aim is to make this user manual as helpful as possible. Please keep us informed of your comments and suggestions for improvements. Beanair appreciates feedback from the users.

Document Type : Technical Note

Reference : TN-RF-19

Beandevice[®] Wilow - Using MQTT with Node Red

2. VISUAL SYMBOLS DEFINITION

Visual	Definition
	<u>Caution or Warning</u> – Alerts the user with important information about Beanair wireless sensor networks (WSN), if this information is not followed, the equipment /software may fail or malfunction.
	<u>Danger</u> – This information MUST be followed if not you may damage the equipment permanently or bodily injury may occur.
1	<u>Tip or Information</u> – Provides advice and suggestions that may be useful when installing Beanair Wireless Sensor Networks.

Document Type : Technical Note

Reference : TN-RF-19

3. AIM OF THE DOCUMENT

The aim of this document is to demonstrate a simple integration of the BeanDevice[®] Wilow in the Internet of things ecosystem using cutting-edge technology, this will be very important for a countless possibilities of measurements, collecting, analyzing and processing the data .

This document is not intended to deliver an extreme precise step-by-step tutorial but will focus more on the specification of the BeanDevice[®] MQTT frame and the basic use of the IBM Node-RED Internet of things flow based development platform.

1. OVERVIEW

The idea is to introduce the BeanDevice to the internet of things using the MQTT protocol and the IBM flow based Node-RED, data can be collected locally or on the cloud using the IBM bluemix platform.

Figure 1: System diagram

We can install and use local MQTT broker or use a free of cost online broker (limited). The BeanDevice will publish data to all subscribed devices on its topic, and we can publish configuration (change acquisition mode, restart BeanDevice ...set sleep mode) to a subscribed BeanDevice.

Figure 2: Data collection

Figure 3: BeanDevice Configuration over MQTT

2. INSTALATION AND ENVIRONMENT CONFIGURATION

2.1 NETWORK

To get started using Our BeanDevice Wilow over MQTT and before starting the configuration we need to install an MQTT broker on any embedded computer or SBC of your choice(Raspberry PI,Beaglebone black,..)Alternatively, even use a windows system (like in this example), also we can simply use an online broker (free with limits), next we build our WiFi network and make sure we have the network architecture as shown in the figure below.

Figure 4: Local network configuration

2.2 CONFIGURATION

In order to start the MQTT communication we have to setup the MQTT configuration using BeanScape, after connecting the BeanDevice to the network (<u>find more details in our YouTube</u> video: getting started with BeanDevice Wilow).

Select your BeanDevice and scroll down to MQTT in the BeanDevice tab.

A new window will pop up and it is where we will configure the BeanDevice MQTT module. To make things simple we will not use the security feature (SSL/TLS and Certif options).

MQTT Module : MAC_ID : 0 x F0B5D1A48F4E0000	X
Broker Port: 1993 DNS Status: Enabled	MQTT Status Stopped Stop Validate MQTT Ack: NA Restart
Authentication Password:	Topic for static measurement Publish Status: ID Channel: O Ch_Z Topic Name: O Validate
Validate SSL/TLS Config Security Choice : Disabled Security Protocol Version: SSLV3_0	Topic for dynamic measurement MQTT Status: Deabled Streaming Topic: Validate
Certif Certificate :	Subscription Subscription status: Disabled Topic Name: Default Urbitdate
CA file Name : NA CA file Valid from : NA To : NA Upload Status File Status Upload Status NA Upload Status NA Cancel and reset Byte Transferred	Keep Alive Interval : 60 Version: V3R1R1 V3R1R1 V3R1R1 V3R1R1 ID Client: ID Client:
Progress 0%	Validate

<u>Broker</u>

Broker		
Port:	1883	1883
DNS Status:	Enabled	
IP Broker:	0.0.0.0	
DNS:	broker.hivemq.com	broker.hivemq.com
	[mport	Validate

- Port: TCP/IP port to use with MQTT .1883 and 8883(secured port, over SSL/TLS) are the reserved (default) ports for MQTT.
- **DNS** Status: check it if you want to use your broker DNS otherwise uncheck it if you want to use your broker ip address.
- **IP Broker**: enter your broker Ip address (make sure to uncheck the DNS Status).
- **DNS**: enter the DNS(domain name server) of your Broker (make sure to check the DNS Status)
- **Import button**: Import saved configuration (last used configuration).
- **Validate**: confirm and save your broker configuration.

Authentication

MQTT broker can be configured to require client authentication using a valid username and password before a connection is permitted.

- **Username:** specify your user name
- **Password:** enter your password
- Validate: save your configuration.

Keep alive

The keep alive functionality assures that the connection is still open and both broker and client are connected to one another

Keep Alive		
Interval :	60	60
Version:	V3R1R1	V3R1R1 ~
Auto.gen.ID Client:	1	\checkmark
ID Client:	WILO0366891585134266273	
		Validate

- Interval: The interval is the longest possible period of time, which broker and client can endure without sending a message.
- Version: MQTT Protocol version
- Auto.gen.ID Client: check for auto generate a Client ID
- *Client ID*: Enter your client ID manually (make sure to uncheck Auto_gen.ID Client)
- **Validate**: save your configuration.

Topic for static measurement

The topic is a string used by the broker to filter messages for each connected client.

"Topics for static measurement" section is only for LowDutyCycle and Alarm modes.

In static mode (LDC or Alarm) each sensor in the beandevice will publish its measurements to a specific and well reserved topic.

In our case we will subscribe to those Topics to receive the static measurements from each sensors.

For better and easy use, Topic names are not configurable and they are as follow:

[BeanDevice_MAC-ID]/SENSOR/[sensor-ID]

For Example: F0B5D1A48F4E0000/SENSOR/0

F0B5D1A48F4E0000: Beandevice mac id

0: channel Z

Topic for static measure	ment		
Publish Status:	Enabled	\checkmark	
ID Channel:	0	Ch_Z \checkmark	
Topic Name:	F0B5D1A48F4E0000/SENSOR/0)	Default
	F0B5D1A48F4E0000/SENSOR/0)	Validate

- **Publish Status:** check it to enable publishing.
- **ID** Channel: channel identification, select sensor from the list.
- **Topic Name:** display the used Topic name to publish measurement to (not configurable).
- **Default:** to set a default configuration. You need to click this button to set the Topic name.
- **Validate:** save your configuration.

Topic for dynamic measurement

Here you enable the Topic for dynamic measurements and it works only for the streaming, S.E.T and Shock Detection modes.

The beandevice will publish all measurement for all sensors to a single Topic.

Again, the topic name is not configurable and you can only enable or disable this option.

The topic format is as follow:

[BeanDevice_MAC-ID]/STREAMING

For Example: F0B5D1A48F4E0000/STREAMING

F0B5D1A48F4E0000: beandevice ID

- MQTT_status: check it to enable publishing
- **Streaming Topic:** display the used Topic name to publish measurement to (not configurable).
- **Default:** to set the default configuration. You need to click this button to set the Topic name.
- **Validate:** save your configuration.

<u>Subscribe</u>

The BeanDevice will subscribe to a another MQTT client who will publish configuration messages,

Subscription			
Subscription status:	Enabled	\square	:
Topic Name:	F0B5D1A48F4E0000/OTAC		Default
	F0B5D1A48F4E0000/OTAC		Validate

- **Subscription status:** check it to enable subscribing.
- **Topic Name:** Field to enter your topic's name to subscribe to.
- **Default:** to set the default configuration. You need to click this button to set the Topic name.
- **Validate:** save your configuration.

MQTT STATUS

Here you can check your MQTT different status, connected, stopped, connecting or disconnecting and can start/restart your connection from here.

MQTT Status				
MQTT Status:	Connected	Start	\sim	Validate
MQTT Ack:	NA			Restart

- **MQTT Status:** shows the current status of the MQTT module:
 - Connecting: trying to establish a connection
 - Connected: connection established
 - Disconnecting: disconnecting the Client
 - Stopped: the connection is stopped
- **Start/Stop:** select to start or to stop your MQTT Client connection
- **Restart:** restart your connection

2.3 TESTS

After configuring the BeanDevice MQTT module you can switch Beanscape to MQTT mode and connect to your broker.

Select your beandevice -> go Tools -> click MQTT Configuration:

A new window will pop up to configure the Beanscape MQTT.

Because the broker isn't configured to use any security feature, don't enable the Authentication, SSL and certification tools options.

	"Rethinking sensing technology"	Document version : 2.0	
BeanAir			
	Document Type : Technical Note Reference : TN-RF-19	Beandevice® Wilow - Using MQTT with Node Red	

MQTT Configuration Use DNS DNS: broker.hivemq.com Broker IP 192.168.1.244 Port: 1983	MQTT Connection MQTT Status Connected MQTT Ack Client Accepted Disable MQTT O Stop
Enable Authentication User Name Password: Enable SSL	Add Device Device Mac ID F0B5D1A48F4E0000 MAC ID F0B5D1A48F4E0000 Topic F0B5D1A48F4E0000/OTAC Validate
SSL/TLS Version None None SSL/TLS Version None SSL/	Request sent Successfully Delete BeanDevice BeanDevice

✓ Set your broker configuration in this MQTT configuration section (make sure to use the same broker (ip or DNS) and port you used to configure the beandevice), after that click validate:

MQTT Configuration	n	
Use DNS		
DNS:	broker.hivemq.com	broker.hivemq.com
Broker IP	192.168.1.244	192.168.1.244
Port:	1883	1883
Enable Authent	ication	
User Name		
Password:		
Enable SSL		
SSL/TLS Version	None	None
	🌠 Validate 🤳	Clear all

✓ Enable MQTT mode by using the Enable (Disable) MQTT button in the MQTT connection section, and then click start:

MQTT Connection	
MQTT Status	Connected
MQTT Ack	ClientAccepted
Disable MQ	TT O Stop

✓ Add your beandevice to the list of devices by typing the device mac-ID in the "MAC ID" field and set the topic name in the "Topic" field to the same topic you used for the subscription section in the beandevice MQTT configuration.

Add Device Device Mac ID	F0B5D1A48F4E0000 -	
MAC ID	F0B5D1A48F4E0000	
Topic	F0B5D1A48F4E0000/OTAC	
	🛨 Validate	
Request sent Successfully		

✓ If your setup is correct and followed the exact same steps, you will be able to see your beandevice added to the list of device, and you can configure it and receive measurement.

👐 BeanScape			
File Server Tools Off. Data Analysis Advanced func. Help			
: 🔄 🔤 🔯 👲 💭 💭			
HAC_ID : 0 x F0B5D1A48F4E0000	BeanDevice® Status	Wilow® BeanDevice	
	Identity Mac Id : F0B5D1A48F4E0000	Network Diagnostic	BeanDevice® config. Status Sensor Info Senso + +
— ■ Ch_Z — ■ INC_X	SSID: J_family	PER: 0.00 %	Config Status:
INC_Y	IP Addr : 192.168.1.102		LED Status:
	Label MAC ID : 0 x E085D1A489	Power Supply Diagnostic	Synchronized
	- Version	Temperature : 21 ·c	TimeZone: 0
	HW Version: V2R0	Power supply : Mains	NTP URL: time.google.com:123
	SW Version: V3R8	Power mode : Bat. Saver Disable	System Information
	DAQCapability	Battery voltage : 4.152	Diagnostic cycle : 00:00:02 hh:mm:ss
	Max SR : 2000 Hz	Battery level : Good	Listening Cycle : NA hh:mm:ss
	Max TX_Ratio: 5	DiagDate : 25/03/2020 13:56:54	Data Aging: NA ms

✓ Set your BeanDevice to LowDutyCycle acquisition mode and check the graph (make sure to enable the channel's topic for the static measurement):

Another way to test your setup and your BeanDevice MQTT configuration is to use a desktop MQTT test client (<u>Download for free from here</u>) to subscribe to one of its static measurement topics after setting your BeanDevice to LowDutyCycle acquisition mode.

Configure the desktop MQTT Client MQTT.FX to connect to **broker.hivemq.com** broker which is the same broker the beandevice connected to (use a Client ID of your choice) and subscribe to the **FOB5D1A48F4E0000/SENSOR/0** Topic so we can read the payload sent from the BeanDevice sensor 0 (which is channel Z)

MQTT Broker Profile Settings		
Broker Address	broker.hivemq.com	
Broker Port	1883	
Client ID	MQTT_FX_Client	Generate

WQTT.fx - 1.7.1		– 🗆 ×
File Extras Help		
local mosquitto 🔹 🍪 Connect Disconnect		₽ ●
Publish Subscribe Scripts Broker Status Log		
F0B5D1A48F4E0000/SENSOR/0 Subscribe		Qo50 Qo51 Qo52 Autoscroll 057
F0B5D1A48F4E0000/SENSOR/0 69	F0B5D1A48F4E0000/SENSOR/0	80 QoS 0
Dump Messages Mute Unsubscribe	F0B5D1A48F4E0000/SENSOR/0	81 QoS 0
	F0B5D1A48F4E0000/SENSOR/0	82 QoS 0
	F0B5D1A48F4E0000/SENSOR/0	83 QoS 0
	F0B5D1A48F4E0000/SENSOR/0	84 QoS 0
	F0B5D1A48F4E0000/SENSOR/0	85 QoS 0
	F0B5D1A48F4E0000/SENSOR/0	86 QoS 0
	F0B5D1A48F4E0000/SENSOR/0	
Tanias Callastas (0)	25-03-2020 14:29:10 52150725	86 QoS 0
	0501 0087 6A7B 5EE3 0300	

Figure 6: Raw payload displayed on Mqtt.fx

2.4 NODE-RED

2.4.1 Getting started

For anyone who wants to start using Node-Red to collect data from a BeanAir Wilow WSN we provides you examples for both, static and dynamic modes with visual results.

2.4.2 Static mode

In order to make the data readable and manageable we will proceed with an example based on node-RED, a flow-based development tool by IBM (more info and installation guide here) to collect data from a device in Low Duty Cycle mode which is one of the static modes.

In node-RED, we configure an MQTT node to listen to our TOPIC

Properties			
Name	hivemq broker		
Connection	Security Messages		
Server	broker.hivemq.com Port 1883		
	Set broker configuration		
Properties		۵	<u>ļ</u> dį
af			
Server	hivemq broker	▼ 🖉	
📰 Торіс	F0B5D1A48F4E0000/SENSOR/0		
🛞 QoS	0 •		
C Output	auto-detect (string or buffer)	•	
Name Name	BROKER		

Figure 7 :MQTT node configuration

Figure 8 : A simple debugger node displays the raw payload frame

2.4.2.1 <u>Payload</u>

The MQTT frame sent from the BeanDevice[®] Wilow[®] will be composed of ten Bytes in the LowDutyCycle mode for example, and the content will be distributed as in the table below:

Data meaning			Size
Device Type		1 byte	
Acquisition type (Default 0x01)		1 byte	
Channel Id		1 byte	
Date in Unix time format (LSB First)		4 bytes	
	Byte[0] data bits		1 byte
Data sample measured (LSB First)	Byte[1] data bits		1 byte
	Byte[2]	Sign bit	8 th bit
		data bits	7 bits

Table 1: LowDutyCycle MQTT frame content

Example of a LowDutyCycle MQTT payload:

- 0: 0x5
- 1: 0x1
- 2: 0x1
- 3: 0xda
- 4: 0x4b
- 5: 0x4f
- 6: 0x5a
- 7: 0xf
- 8: 0x0 9: 0x0
- 9: 0x0

↓ Device type will be identified in the Byte (0) according to the figure below:

Device type	Value
AX 3D	0x01
HI INC MONO	0x02
HI INC BI	0x03
X- INC MONO	0x04
X-INC BI	0x05
AX 3DS	0x06

Figure 9 : BeanDevice type

0: 0x5---> X-INC

4 The Byte (1) will tell us about the Acquisition mode:

Data Acquisition type	Value	Description
LDCDA mode	<i>0x01</i>	The Id of the Low Duty Cycle Data Acquisition mode
Alarm mode	<i>0x02</i>	The Id of the Alarm Data Acquisition mode
Streaming mode	0x03	The Id of the Streaming Data Acquisition mode
Shock Detection mode	<i>0x04</i>	The Id of the Shock Detection mode
LDC Math Result	0x05	The Id of the Low Duty Cycle Math Result
SET mode	0x06	The Id of the SET (STREAMING WITH EVENT TRIGGER) mode
Dynamic Math Result	<i>0x07</i>	The Id of the Dynamic Math Result

Figure 10 : Acquisition modes

- 1: 0x1---->LowDutyCycle Acquisition mode
 - 4 The Byte (2) identify the Channel ID which are identified as below :

Channel	Value
Accelerometer Channel X	0x01
Accelerometer Channel Y	0x02
Accelerometer Channel Z	0x00
Inclinometer Channel X	0x03
Inclinometer Channel Y	0x04

Figure 11 :Channel ID

2: $0x1 \rightarrow x$ channel X

Bytes (3)(4)(5)(6) displays measurement time in UNIX format

- 3: Oxda
- 4: 0x4b
- 5: 0x4f
- 6: 0x5a

> 5a4f4bda ----> GMT: Friday, January 5, 2018 9:56:42 AM

Byte (7)(8)(9): Measurement Value (need to be divided by 1000)

```
7: 0xf
8: 0x0
9: 0x0
> F (hex) ---> 15 (decimal)
> Last bit is 0 so it's positive
> 15/1000 = 0.015
```


Page : 24 / 45

	"Rethinking sensing technology"	Document version : 2.0
BeanAir	Document Type : Technical Note Reference : TN-RF-19	Beandevice [®] Wilow - Using MQTT with Node Red

2.4.2.2 <u>Node-RED Advanced options</u>

Now, after getting to receive our first data and understanding the content of a sample LowDutyCycle frame we proceed by making use of our Node-Red IoT tool and the countless possibilities it makes available.

2.4.2.2.1 Function

The function nodes will be the processing node of all the input data, in this example we used a function node to write our JavaScript line of codes to parse the payload frame as shown earlier, we have each info we need on its own.

Figure 12 : Flow sample

We can then setup another function to listen for the measurement values and send notifications if a defined threshold is reached

Figure 13 :Notification node

2.4.2.3 Notification nodes

Since notification is very important, you can use a SMTP node for notification,

BeanDevice	► То	Test@gmail.com
Acquisition mo	Server	smtp.gmail.com
BROKER Channel ID connected	>⊄ Port	465
	🛓 Userid	Tech-support@Beanair.com
Measure	Password	
f parsing		
	Name	Name

Figure 14 :SMTP setup

Or you can also use an online paid service to send SMS notifications to your mobile (using Twilio for example)

twilio config 🔹
SMS •
+00439960000000
SMS

Figure 15 :SMS configuration

	"Rethinking sensing technology"	Document version : 2.0
BeanAir		Roandouice® Wilow Using MOTT
	Document Type : Technical Note	with Node Red
	Reference : TN-RF-19	

2.4.2.4 Display nodes

Displaying all of the signal and info is also possible using some default gauges, graphs, text holders, labels, etc., or if available using some HTML/CSS skills will make a very good looking and useful dashboards to be accessed from a different Local URL

2.4.2.5 Storage nodes

We can also use File storing nodes to store all the data locally

Please consider the environment before printing this document.

Or we can use local or online data base (MySQL for example) to manage all the data.

Figure 18 : Database nodes

2.4.3 Dynamic example

An example with NodeRed to collect data from Beandevice in streaming continue mode, which is one of the dynamic modes, will illustrate how to read, parse and extract all the information send from the device and how to manage to create a data visual application.

2.4.3.1 Subscribe to dynamic topic

For the dynamic mode we need to subscribe our Node-Red to the dynamic topic and it's only one topic for all channels and works for all dynamic modes (Streaming, SET, Shock Detection).

Topic name: [BeanDevice-MAC_ID]/STREAMING

Configure the MQTT node to listen to the streaming topic:

Properties	 ▶ ₽ ₽ ₽ ₽
Server	hivemq broker
📰 Topic	F0B5D1A48F4E0000/STREAMING
⊛ QoS	0 •
🕞 Output	auto-detect (string or buffer)
Name Name	Broker

Figure 19: MQTT node configuration for dynamic mode

After you connect to broker and subscribe to the dynamic mode topic, you will be able to receive data from BeanDevice.(don't forget to start your device in streaming mode).

Figure 20: A simple debugger node displays the raw payload frame of Streaming mode

2.4.3.2 Payload

The MQTT frame sent from the BeanDevice[®] Wilow[®] in the Streaming mode will be composed in way that meets the high frequency publishing so the content will be distributed as follow:

Data meaning Size					
Device Type		1 byte			
Acquisition type (I	Defa	ult 0x03)	1 byte		
Reference In Unix time forma	t (L	time SB First)	4 bytes		
Reference millisec	ond	(LSB First)	2 bytes		
Sampling frequence	cy (L	.SB First)	2 bytes		
Channels bitmap	ls d	channel 1 activated?	0 th Bit	1 st Byte	
(LSB FIrst)	ls d	channel 2 activated?	1 st Bit		
	ls d	channel 3 activated?	2 nd Bit		
		:	:		ŝ
		:	:		byte
		:	:	2 nd Byte	4
		:	:	3 rd Byte	
		:	:	4 th Byte	
	ls d	channel 32 activated ?	31 th Bit		
Frame Sequence Id (LSB First):(Begins from 0)			3	bytes	
Number of data acquisitions per channel			2 bytes		
Data Acquisition c	ycle	•	3 bytes		
Data acquisition duration			3 bytes		
Previous Number of data acquisitions per channel		2	bytes		
Flags Synchronization		1 bit		Λe	
	Future Use		7	bits	
Network Quality (LQI)			1 byte		

"Rethinking sensing technology"

Document version : 2.0

Document Type : Technical Note

Beandevice[®] Wilow - Using MQTT with Node Red

Reference : TN-RF-19

Data Sample 1	Byte[0] d	ata bits		1 b <u>y</u>	yte	
(LSB First)	Byte[1]		et	1 b	yte	rtes
	Byte[2]	Sign bit	ack	8 th bit	1 byte	3 by
		data bits	ub F	7 bits		
:			S.		:	
Data Sample 1 of in the "channels	channel n bitmap" fie	(last one present eld) (LSB First)	Ţ	3	bytes	
Data Sample 2 of channel 1 (LSB First)		ket	3	3 bytes 3 bytes		
Data Sample 2 of next channel (LSB First)		ack	3			
:			du F		:	
Data Sample 2 of channel n (last one present in the "channels bitmap" field) (LSB First)		2 nd S	3	bytes		
:					:	
Data Sample M of	f channel 1	(LSB First)	ket	3	bytes	
Data Sample M of	f next char	nnel (LSB First)	Pack	3	bytes	
:			l du		:	
Data Sample M of channel n (last one present in the "channels bitmap" field) (LSB First)		M th S	3	bytes		

Table 2: Streaming MQTT frame content

Example of a Streaming MQTT payload:

```
Device type: 0x05
Acquisition type: 0x03
Reference time: 0x07,0xE5,0x7D,0x5E
Reference millisecond: 0x15,0x00
Sampling frequency: 0x64,0x00
Channels bitmap: 0x1F,0x00,0x00,0x00
Frame sequence id: 0x12,0x00,0x00
Number of data per channel: 0x42,0x00
Data acquisition cycle: 0x00,0x00,0x00
Data acquisition duration: 0x00,0x00,0x00
Previous number of data per channel: 0x42,0x00
Flags: 0x01
Network quality: 0xE1
1<sup>st</sup> SubPacket:
Channel 1: 0xE2,0x03,0x00
Channel 2: 0x11,0x00,0x00
Channel 3: 0x14,0x00,0x80
Channel 4: 0x72,0x04,0x80
```



```
Channel 5: 0x6E,0x03,0x00

.

.

M<sup>th</sup> SubPacket:

Channel 1: 0x10,0x00,0x80

Channel 2: 0x70,0x04,0x80

Channel 3: 0x6E,0x03,0x00

Channel 4: 0xDE,0x03,0x00

Channel 5: 0x0F,0x00,0x00
```

Device type will be identified in the Byte (0) according to the table below:

Device type	Value	Description
AX_3D	0x01	AX_3D device Id
HI_INC_MONO	0x02	HI_INC_MONO Device Id
HI_INC_BI	0x03	HI_INC_BI Device Id
X_INC_MONO	0x04	X_INC_MONO Device Id
X_INC_BI	0x05	X_INC_BI Device Id
AX_3DS	0x06	AX_3DS device Id

Table 3: BeanDevice type

0: 0x5----> X-INC

4 The Byte (1) will tell us about the Acquisition mode:

Data Acquisition type	Value	Description
LDCDA mode	0 x01	The Id of the Low Duty Cycle Data Acquisition mode
Alarm mode	0x02	The Id of the Alarm Data Acquisition mode
Streaming mode	0x03	The Id of the Streaming Data Acquisition mode
Shock Detection mode	0x04	The Id of the Shock Detection mode
LDC Math Result	0x05	The Id of the Low Duty Cycle Math Result
SET mode	0x06	The Id of the SET (STREAMING WITH EVENT TRIGGER) mode
Dynamic Math Result	0x07	The Id of the Dynamic Math Result

Table 4: Acquisition modes

Document Type : Technical Note Reference : TN-RF-19

1: 0x1---->LowDutyCycle Acquisition mode

- Bytes (2)(3)(4)(5) displays measurement time in UNIX format (LSB first)
- $2: 0 \ge 07$
- 3: 0xE5
- 4: 0x7D
- 5: 0x5E
 - > 5E7DE507 ----> 1585308935, GMT: Friday, March 27, 2020 12:35:35 AM
- Bytes (6)(7) displays millisecond part of the measurement time (LSB first)
- 6: 0x15
- 7: 0x00
 - > 0015 ----> 21 millisecond
 - Bytes (8)(9) display sampling frequency (LSB first)
- 8: 0x64
- 9: 0x00
 - > 0064 ----> 100 hz
 - Bytes (10)(11)(12)(13) display channels bitmap (LSB first), each bit represent the status of the channel. (if Nth bit 0 mean Nth channel is disabled and if it's 1 mean it's enabled)
- 10: 0x1F 11: 0x00
- 12: 0x00
- 12: 0x00 13: 0x00
 - > 0000001F ----> channel 0, 1, 2, 3, 4 and 5 are enabled

Channel	Value
Accelerometer Channel X	0x01
Accelerometer Channel Y	0x02
Accelerometer Channel Z	0x00
Inclinometer Channel X	0x03
Inclinometer Channel Y	0x04

Table 5: Channel ID


```
15: 0x00
16: 0x00
      > 000012 ----> 18
  Bytes (17)(18) displays number of data per channel (LSB first)
17: 0x42
18: 0x00
   > 0042 ----> 66 measurement per channel
  Bytes (19)(20)(21) displays data acquisition cycle (LSB first)
19: 0x00
20: 0x00
21: 0x00
      > 000000 ----> 0: because we are using the streaming continue
          which require no acquisition cycle.
      > Bytes (22)(23)(24) displays data acquisition duration (LSB first)
22: 0x00
23: 0x00
24: 0x00
      > 000000 ----> 0: because the streaming continue doesn't
          require acquisition duration.
  Here's Bytes (25)(26) displays the previous number of data per channel (LSB first)
25: 0x42
26: 0x00
      > 0042 ----> 66
```

Byte (27) displays flags: in the flags field only the first bit is used to represent the synchronization status and the rest are for future use.
 27: 0x01

> 01 ----> bit 1 is 1: device synchronized

14: 0x12

Please consider the environment before printing this document.

Byte (28) displays network quality (LSB first) 28: 0xE1

> E1 ----> 225

The rest of bytes represent the measurement values, each measurement in 3 bytes and the last bit is a sign bit (LSB first), and to get the correct value we need to device by 1000.

$D_{acimal} make = (1)^{sign bit}$	Remaining bits in decimal format
Decimal value $-(-1)^{\circ}$	1000

Each SubPacket represent the acquired measurement for each channel at a specific time. To calculate that time we need to use this formula:

T _{SubPa}	$ {}_{cket} = Reference\ Time\ Second\ + \frac{Reference\ Millisecond\ }{1000}\ + \left(\frac{1}{Sampling\ frequency}\right) \\ *\ SubPacket\ Index $				
Where					
SubPacket Index = (Frame Sequence Id * Previous Number of data acquisitions per channel) + Current SubPacket row					
Beca 1 st SubPa Channel 29: 0xE2 30: 0x03 31: 0x00	use we have 5 channels, Each subPacket will hold 5 measurement. .cket: 1:				
>	0003E2> 994/1000 = 0.994 and last bit in 0 which mean it's a positive number.				
>	SubPacket index = 18 * 66 + 0 = 1188 (first SubPacket so the current SubPacket row is 0)				
>	$T_{subPacket} = 1585308935 + 21/1000 + (1/100)*1188 =$				

1585308946,901 ----> GMT: Friday 27 march 2020 12:35:46.901

2.4.4 Node-RED Advanced options

After understanding the content of the MQTT streaming frame we can proceed to make use of the Node Red platform and make data more visible by being visual using graphs.

To make this happen we need to install some packages:

- Node-red-contrib-moment: to convert data/time from timestamp to human readable data/time. (link: <u>https://github.com/TotallyInformation/node-red-contrib-moment</u>)
- Node-red-dashboard: to create a live dashboard (graph) where we will display our measurements in real time. (link: <u>https://github.com/node-red-dashboard</u>)

2.4.4.1 <u>Functions</u>

Verification and Parsing nodes:

Before start parsing the MQTT frame we need to make sure it comes from a streaming mode, because the BeanDevice can publish MQTT frames for other acquisition modes like dynamic math result, SET and Shock detection, so we need to make sure to pass to our parsing node only rames from Streaming mode.

The parsing node function will receive as input the payload sent from the BeanDevice and captured by the Broker node and will slice it into sections, each section will hold only the payload of each field of the Streaming MQTT frame content and return them in array object.

Device type node:

Based on the Error! Reference source not found. this node will return the type of the Beandevice i n readable format, String format.

Data acquisition mode node:

Based on the Table 4: Acquisition modes this node will return the acquisition mode in readable format, String format.

Synchronization node:

Returns the synchronization status of the device.

List of channels node:

From the channels bitmap field, this function will determine which channel is enabled by using the bit index and with the help of Table 5: Channel ID we will return each active channel's name In Array format.

Previous and Current number of data per channel node:

2 nodes with the same function, each one will calculate the number of measurement per channel using hex to decimal conversion, one for the previous number and the other for the current number.

- (f	get_currentNbrDataPerChannel					
- • f	get_previouseNbrDataPerChannel					

Frame Id node:

Return the frame Id after convert it from hex to decimal.

Timestamp and Millisecond node:

The time received from the BeanDeivce is divided in 2 fields, one for the timestamp (unix format) and the other for the milliseconds. This function will convert the timestamp from hex to decimal number and the same for the milliseconds and return both of them in Array format.

Sampling frequency node:

Return the sampling frequency after convert it from hex to decimal.

 List of Data node:

To find out which measurement belong to which channel we need to know the number of data per channel and the number of active channels and by joining them with the data payload using join node we can pass those information to this function and with the help of Table 2: Streaming MQTT frame content we can return an array of 2 dimensions that store all converted data from hex to decimal.

4 List of Time node:

This function will calculate the corresponding time of each measurement by applying the formula:

For this we need a join node to pass to our function the current and the previous number of data per channel, the frame id, the sampling rate and the timestamp with the millisecond part.

✤ To Dashboard nodes:

Before we send measurements to graph we need to prepare the data in a format that the dashboard can use it and because we are using "Node-red-dashboard" the data need to be in this format:

```
[{
"series": ["Channel 1", "Channel 2",.., "Channel n"],
"data": [
    [{"x": timestamp 1 in millisecond, "y": measurement 1 of Channel 1},
    {"x": timestamp 2 in millisecond, "y": measurement 2 of Channel 1},
    {"x": timestamp m in millisecond, "y": measurement m of Channel 1}
],
    [{"x": timestamp 1 in millisecond, "y": measurement 1 of Channel 2},
    {"x": timestamp 2 in millisecond, "y": measurement 2 of Channel 2},
    {"x": timestamp 1 in millisecond, "y": measurement 2 of Channel 2},
    {"x": timestamp m in millisecond, "y": measurement 1 of Channel 2},
    {"x": timestamp m in millisecond, "y": measurement m of Channel 2},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel 2},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel 1},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel 1},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in millisecond, "y": measurement 1 of Channel n},
    {"x": timestamp 1 in m
```

Our BeanDevice supports 2 sensor types (tilt and inclinometer), so it's better to use 2 graphs which require to create 2 nodes, both of them run the same code to prepare the object we will feed to the dashboard's node but each one will use a different filter to filter the upcoming data.

Note: because of the "Node-red-dashboard" timestamp to date/time conversion technique we need to multiply the timestamp by 1000 and use only the decimal part to display time in milliseconds.

To create a live chart we need to link the old data with the new one, so each time we receive a new frame we will store its data in a global variable within the flow context.

channelsList	f to tilt dashboard
- f get_dataArray	
- f get_dateTimeArray	f to inclinometer dashboard

Reset graph node:

Streaming mode have 3 options (continue, burst and one shot), in burst option we need to refresh the graph each time a new streaming start, for this reason we need to empty the global variables each time we receive an MQTT frame with frame Id equal to 0.

2.4.4.2 Dashboard

The Last step is to display our data in the graph, and to do this we need to use the chart node and the text node.

Chart node to display the graph for each sensor type.

Text node to display the device type and data acquisition mode with the synchronization status.

Note: to make sure we get the correct time with the time zone specified in Beandevice we need to change the host machine time zone to GMT.

2.4.4.3 Full Node Red Example

Figure 21: Full MQTT streaming client with Node Red

Air					
MQ	TT Streaming				
		X- INC BI "Stream	ing" (not synchronized)		
	Tilt (g)			Inclinometer (deg)	
4.2	Ch_Z □ Ch_X □ Ch_Y			🔲 lnc_X 🔲 lnc_Y	
1,2			1,2 1 		
0,8			0,8		
0,4 0,2 0	18:27:12 257 30(03/2020 01,2 0.091 01,2 0.091 01,2 - 0.019 01,2 - 0.019		0,6		
-0,2 18:27:0	04 000 30/03/2020 18:27:14 000 30/03/2020	18:27:25 000 30/03/2020	0 18:27:04 000 30/03/2020	18:27:14 000 30/03/2020	18:27:25 000 30/03/2020

Figure 22: MQTT streaming client with node red results

Document Type : Technical Note

Reference : TN-RF-19

2.5 CLOUD SOLUTION

The cloud solution requires a BeanDevice[®] Wilow[®] Connected to the internet, an available MQTT broker and any IoT cloud Platform, in this example we are going to use the IBM Cloud to setup and manage Our BeanDevice[®] Wilow[®], this allows us to use a lot of API's to connect to other apps and services

https://console.bluemix.net/registration/?target=%2Fcatalog%2Fstarters%2Fnode-red-starter

You can use free of cost online MQTT brokers or paid one for better support, more connections and much bigger data rate, or You can Just use a locally installed MQTT broker.

After signing up go to your online Node-Red flow editor

Figure 23 :Cloud connection

In the flow editor in this example and other than the same I did in the local setup example I managed to work on various flows to make sure all BeanDevice[®] Wilow[®] channels are monitored ,

Figure 24 Display BeanDevice Channels on a web page

IBM Cloud allows you access to your monitoring address through a public customizable URL, for example:

https://wilow.eu-gb.mybluemix.net

Figure 25 :Dashboard display on a web page

Please consider the environment before printing this document.

Document Type : Technical Note

Reference : TN-RF-19

Beandevice[®] Wilow - Using MQTT with Node Red

3. RELATED DOCUMENTS & VIDEOS

In addition to this technical note, please consult the related User guide, technical notes and videos:

Document name (Click on the web link)	Related product	Description
TN RF 004 «MQTT Communication Protocol »	Wilow [®] products line	MQTT Communication Protocol for a seamless integration into a third-party IOT software
<u>TN RF 005 «Building a reliable Wi-Fi</u> network with Wilow sensors»	Wilow [®] products line	The aim of this document is to describe the autonomy performance of the BeanDevice [®] SmartSensor [®] and ProcessSensor [®] product line in streaming and streaming packet mode.
UM RF 007 «UM-RF-07-ENG-Wilow- Wifi-Sensor»	Wilow [®] products line	BeanDevice [®] Wilow [®] user manual

Beanair video link (YouTube)	Related products
Getting started with BeanDevice® Wilow - Wi-Fi Low Power Sensors	BeanDevice [®] Wilow
Wilow - Wi-Fi Sensors-Low duty cycle data acquisition mode on BeanDevice [®] Wilow	BeanDevice [®] Wilow
Wilow - Wi-Fi Sensors-Streaming mode with continuous monitoring on BeanDevice® Wilow	BeanDevice [®] Wilow
Wilow - Wi-Fi Sensors-How to setup Wilow Datalogger	BeanDevice [®] Wilow
Wilow - Wi-Fi Sensors-Smart Shock Detection (SSD) mode	BeanDevice [®] Wilow [®]

All the videos are available on our YouTube channel

