Wilow wireless sensors

Version 1.0

TECHNICALWILOW® PRODUCTS RECALIBRATIONNOTEPROCESS

TN-RF-25 Wilow BeanDevice Recalibration Technical Note

Wilow wireless sensors

DOCUMENT				
Document ID	UM_RF_05	Version	V1.0	
External reference	TN-RF-25	Date	16/06/2021	
Author	Seddik ATTIG, Technical support engineer			
		Project Code		
Document's name Wilow products recalibration process				

Validation				
Function	Destination	For validatio n	For info	
Writer	Seddik ATTIG	✓		
Reader	Shimon ABBADI	✓		
Validation	Antje JACOB		✓	

DIFFUSION				
Function	Destination	For action	For info	
Reader n°1	Antje JACOB, Production Manager	✓		
Reader n°2	Shimon ABBADI, Embedded software engineer	~		

UPDATES			
Versio n	Date	Auteur	Evolution & Status
1.0	16/06/2021	Seddik ATTIG	First version of the document

Disclaimer

The contents are confidential and any disclosure to persons other than the officers, employees, agents or subcontractors of the owner or licensee of this document, without the prior written consent of Beanair GmbH, is strictly prohibited.

Beanair makes every effort to ensure the quality of the information it makes available. Notwithstanding the foregoing, Beanair does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information.

Beanair disclaims any and all responsibility for the application of the devices characterized in this document, and notes that the application of the device must comply with the safety standards of the applicable country, and where applicable, with the relevant wiring rules.

Beanair reserves the right to make modifications, additions and deletions to this document due to typographical errors, inaccurate information, or improvements to programs and/or equipment at any time and without notice.

Such changes will, nevertheless be incorporated into new editions of this document.

Copyright: Transmittal, reproduction, dissemination and/or editing of this document as well as utilization of its contents and communication thereof to others without express authorization are prohibited. Offenders will be held liable for payment of damages. All rights are reserved.

Copyright © Beanair GmbH 2021

1.	TEC	HNICAL SUPPORT	7
2.	VISU	JAL SYMBOLS DEFINITION	8
3.	ACR	ONYMS AND ABBREVIATIONS	9
4.	DOC	CUMENT ORGANIZATION	. 10
5.	BEA	NDEVICE® AX-3D AND AX-3DS RECALIBRATION PROCESS	. 11
	5.1	Factory Calibration Process	. 11
	5.2	How often to recalibrate the BEANDEVICE®?	. 11
	5.3	Recalibration Process	. 11
6.	BEA	NDEVICE® WILOW® HI-INC	. 15
	6.1	Factory Calibration Process	. 15
	6.2	How often to recalibrate the BEANDEVICE®?	. 15
	6.3	Recalibration Process	. 15

List of Tables

Table 1: BeanDevice Recalibration duration	11
Table 2: Recalibration values calculation	13
Table 3: BeanDevice Recalibration duration	15
Table 4: Recalibration values calculation	17

List of Figures

Figure 1: Reset settings	11
Figure 2: Obtention of 1g on the Z axis	12
Figure 3: Obtention of 1g on the Y axis	12
Figure 4: Obtention of the 1g on the X axis	13
Figure 5: Recalibration values	14
Figure 6: Reset settings	15
Figure 7: Sinus table	16
Figure 8: Bringing 14° on X axis	16
Figure 9: Bring 14° on the Y axis	17
Figure 10: New recalibration values	18

1. TECHNICAL SUPPORT

For general contact, technical support, to report documentation errors and to order manuals, contact *Beanair Technical Support Center* (BTSC) at:

tech-support@Beanair.com

For detailed information about where you can buy the Beanair equipment/software or for recommendations on accessories and components visit:

www.Beanair.com

To register for product news and announcements or for product questions contact Beanair's Technical Support Center (BTSC).

Our aim is to make this user manual as helpful as possible. Keep us informed of your comments and suggestions for improvements.

Beanair appreciates feedback from the users of our information.

2. VISUAL SYMBOLS DEFINITION

Symbols	Definition
	<u>Caution or Warning</u> – Alerts the user with important information about Beanair wireless sensor networks (WSN), if this information is not followed, the equipment /software may fail or malfunction.
	<u>Danger</u> — This information MUST be followed if not you may damage the equipment permanently or bodily injury may occur.
1	<u>Tip or Information</u> – Provides advice and suggestions that may be useful when installing Beanair Wireless Sensor Networks.

3. ACRONYMS AND ABBREVIATIONS

AES	Advanced Encryption Standard
ССА	Clear Channel Assessment
CSMA/CA	Carrier Sense Multiple Access/Collision Avoidance
GTS	Guaranteed Time-Slot
kSps	Kilo samples per second
LLC	Logical Link Control
LQI	Link quality indicator
LDCDA	Low duty cycle data acquisition
MAC	Media Access Control
PAN	Personal Area Network
PER	Packet error rate
RF	Radio Frequency
SD	Secure Digital
WSN	Wireless sensor Network

4. DOCUMENT ORGANIZATION

AX-3D & AX-3DS Recalibration Process	 Factory calibration How often to recalibrate the BeanDevice Recalibration Process
Hi-Inc Recalibration Process	 Factory calibration How often to recalibrate the BeanDevice Recalibration Process

TN-RF-25 Wilow BeanDevice Recalibration Technical Note

5. BEANDEVICE® AX-3D AND AX-3DS RECALIBRATION PROCESS

5.1 FACTORY CALIBRATION PROCESS

A static calibration method is used to calibrate the sensor

5.2 HOW OFTEN TO RECALIBRATE THE BEANDEVICE®?

Depending on the operating environmental conditions, a recalibration process should be done to rectify the aging drift due to a long duration of the sensor usage and a temperature drift due to a high temperature environment.

The following table summarize how often user should recalibrate the sensor.

Table 1: BeanDevice Recalibration duration

BeanDevice® Wilow® version	Operating temperature < 40°C	Operating temperature > 40°C
BeanDevice [®] Wilow [®] AX-3D	6 years	3 years
BeanDevice [®] Wilow [®] AX-3DS	3 years	2 years

5.3 RECALIBRATION PROCESS

A static calibration should be done on a table using a reference accelerometer sensor or using a flat desk/table (you can use marble desk or granite desk), but make sure to use a table with a good flatness.

Then follow the instructions below

• First Step

Firstly, you have to back up the previous calibration values (Ratio + Offset), then, reset ratio value to 1 and offset to 0 from the sensor calibration tab on your BeanScape[®] software.

Custom display Notes Measurement con Calibration Ratio : 1.25 Offset : 0	nditionning calibration MQTT Conf Log config.
1. Previous values should be copied	2. Reset Settings
Figure 1: Res	<u>et settings</u>

• Second Step

Point the Positive Z axis to point to the ground to obtain 1g, then do the same thing with the Negative Z.

Each Axis (Positive and Negative) should point to the ground to have the 1g, redo the same instructions with X and Y axis.

The best way to obtain the 1g on the X and Y axis, is to use very accurate 90° bracket.

• <u>Third Step:</u>

Use the Recalibration Excel sheet, and put the obtained values in the blue field for each axis.

Do not change the values in the red field otherwise you will get a faulty calibration value.

Table 2: Recalibration values calculation

	X			Target
Positive X axis	Obtained +X value	Ratio	1.413	1
Negative X axis	Obtained -X value	Offset	-0.079	-1

DO NOT CHANGE THESE VALUES

ENTER YOUR SETTINGS IN BLUE AREA

• Fourth step:

Enter the new obtained Ratio and offset on the red field, on the BeanScape software sensor calibration settings.

		Х			Custom display	Notes Me	asurement conditionning o	alibration	MQTT Conf	Log confi
Positive X axis	0.76365	R	latio	1.413	 Ratio · 1		1.413	Valida	te	
Negative X axis	-0.65165	c	Offset	-0.079						

Figure 5: Recalibration values

Don't forget to validate.

TN-RF-25 Wilow BeanDevice Recalibration Technical Note

Wilow wireless sensors

TN-RF-25 Wilow BeanDevice Recalibration Technical Note

BEANDEVICE® WILOW® HI-INC 6.

FACTORY CALIBRATION PROCESS 6.1

The calibration procedure is based on a side-by-side comparison with a reference tilt meter. For better measurement stability, the two tilt meters are mounted on a sinus table.

HOW OFTEN TO RECALIBRATE THE BEANDEVICE®? 6.2

Depending on the operating environmental conditions, a recalibration process should be done to rectify the aging drift due to a long duration of the sensor usage and a temperature drift due to a high temperature environment.

The following table summarize how often user should recalibrate the sensor.

Table 3: BeanDevice Recalibration duration

BeanDevice [®] Wilow [®] version	Operating temperature < 40°C	Operating temperature > 40°C
BeanDevice [®] Hi-Inc.	6 years	3 years

RECALIBRATION PROCESS 6.3

A static calibration should be done using a granite desk a sinus table and which is already fixed on a preconfigured position.

Then follow the instructions below

First Step

Firstly, you have to back up the previous calibration values (Ratio + Offset), then, reset ratio value to 1 and offset to 0 from the sensor calibration tab on your BeanScape[®] software.

15

• <u>Second Step</u>

Put the BeanDevice Hi-Inc on the sinus table on the +X axis to obtain 14° (just an example, you can predefine any other angle), then reverse the BeanDevice on the -X axis.

Figure 7: Sinus table

Redo the same instructions with Y axis.

• Third Step:

Use the Recalibration Excel sheet, and put the obtained values in the blue field for each axis.

Do not change the values in the red and yellow fields otherwise you will get a faulty calibration value.

Table 4: Recalibration values calculation

	X		
Positive axis	14.058	Ratio	1
Negative axis	-14.002	Offset	0.000

• Fourth step:

Enter the new obtained the offset on the yellow field, on the BeanScape software sensor calibration settings.

The ratio value is always equal to 1, it doesn't change ever.

TN-RF-25 Wilow BeanDevice Recalibration Technical No				Note Wilow wireless sensors				
					a		Management and data size and the sta	
					Custom display	Notes	Measurement conditionning calibratio	n MQTTConf L
x				Calibration Ratio :		1		
Positive axis	14.058	Ratio	1		Offset : 0		0 Va	lidate
Negative axis	-14.002	Offset	0.000					

Don't forget to validate.