

Displacement Sensor Integration (Potentiometer technology) with BeanDevice® AN-V

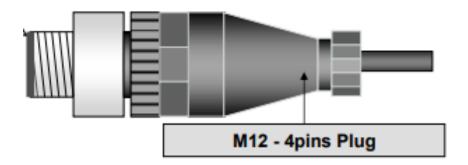
15.04.2024 - Shimon Abadi V1.2
Technical Support Engineer
tech-support@beanair.com

Displacement Sensor Design and specifications

We are proposing two different design:

Sensor with spring return (integrated inside the sensor body for better waterproofness)

Sensor with ball joint



eanAir Sensor with spring return specification

Technical specifications	
Measurement stroke	10 to 100 mm
Linearity	±%0,2 (75-100 mm), ±%0,5 (<75 mm)
Repeatability	< 0,01 mm
Resolution	Infinite
Resistance	2 kOhm: 10 50 mm 5 kOhm: 75 100 mm
Resistance tolerance	± %20
Recommended cursor current	<1 µA
Electrical connections	Connector or 1 m cable output
Displacement speed	< 5 m/s
Mechanical life	100 million movement
Case dimensions	Ø18 mm
Case material	Anodized aluminium
Rod material	Stainless steel
Rod diameter	Ø5 mm
Mechanical fixing	Variable brackets
IP degree	IP 65
Operating temperature	-20°C +80°C
Storage temperature	-30°C +90°C

The spring return is integrated inside the sensor body for better waterproofness)

Displacement Sensor Wiring code

M12-4 Plug Wiring code

PIN1 (Pwr+): Sensor power supply / Wire color Brown

PIN2 (Sens-): Do not connect / Wire color Yellow

PIN3 (Gnd): Electrical Ground / Wire color Blue

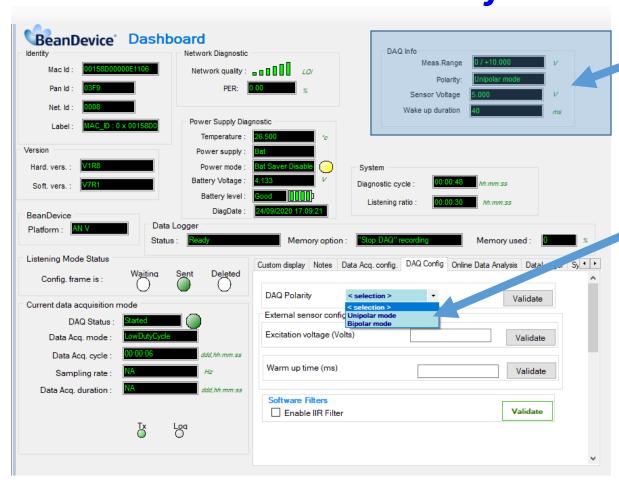
PIN4 (Sens+): Sensor signal + input / Wire color Yellow

Potentiometer sensors comes with a signal output which is ratio-metric, i.e. for a sensor power supply of 10 VDC the signal output is 0 to 10VDC

Summary of your configuration:

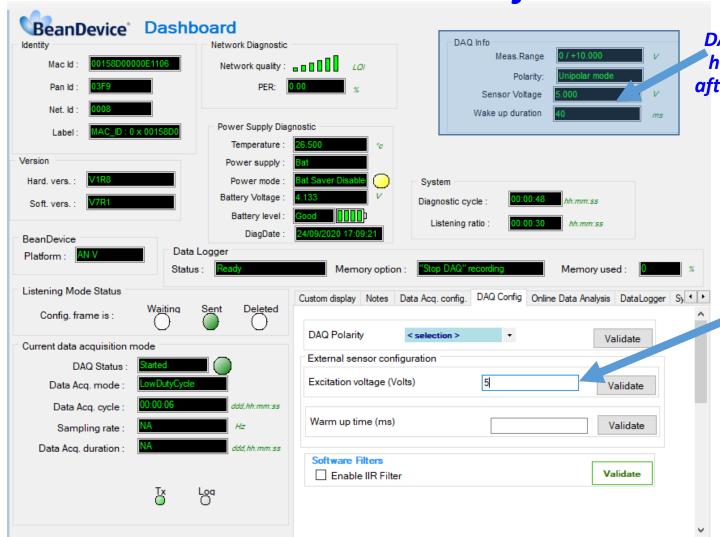
```
Recommended Sensor Power Supply:
```

- 1. 5VDC (low power operation) or 10VDC (more resolution)
- 2. DAQ Polarity: Unipolar
- 3. Sensor warm-up time: 40ms (default value)
- 4. Conversion Assistant (if sensor powered with 5VDC):


```
0V => 0mm
```

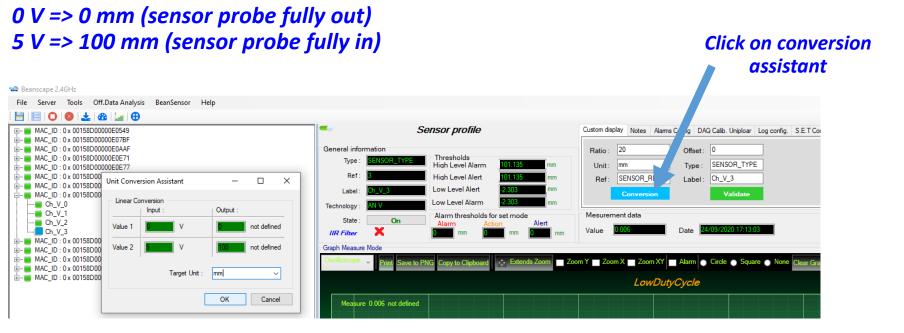
5V => Sensor_Sroke mm

Conversion Assistant (if sensor powered with 10VDC):


OV => 0mm

10V => Sensor_Sroke mm

DAQ status is displayed here (you can check it after validating your new configuration)


Choose Unipolar on DAQ Polarity then click on validate

DAQ status is displayed here (you can check it after validating your new configuration)

Enter an excitation
Voltage of 5VDC for
your sensor

Use the conversion Assistant. if sensor stroke is 100mm and sensor power supply 5VDC):

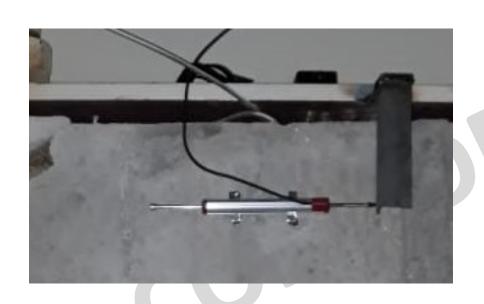
if sensor stroke is 100mm and sensor power supply 10VDC):
0 V => 0 mm (sensor probe fully out)
10 V => 100 mm (sensor probe fully in)

Check your settings

Example of a 100 mm stroke sensor: When the sensor probe is fully in, you should have approx. 100 mm. To provide a good reading on the sensor full scale, the real stroke can be a bit higher than the stroke displayed on the datasheet. In our example we can go up to 100.169 mm but only the measurements between [0mm and 100 mm] are tested, calibrated and warranted.

Sensor Installation on the field

Integration of ball joint sensor



Sensor Installation on the field

Sensor with spring return:

